
7.5

The form $r(\cos \theta+j \sin \theta)$

Introduction.

Any complex number can be written in the form $z=r(\cos \theta+j \sin \theta)$ where r is its modulus and θ is its argument. This leaflet explains this form.

1. The form $r(\cos \theta+j \sin \theta)$

Consider the figure below which shows the complex number $z=a+b j=r \angle \theta$.

Using trigonometry we can write

$$
\cos \theta=\frac{a}{r} \quad \text { and } \quad \sin \theta=\frac{b}{r}
$$

so that, by rearranging,

$$
a=r \cos \theta \quad \text { and } \quad b=r \sin \theta
$$

We can use these results to find the real and imaginary parts of a complex number given in polar form:
if $z=r \angle \theta$, the real and imaginary parts of z are:

$$
a=r \cos \theta \quad \text { and } \quad b=r \sin \theta, \quad \text { respectively }
$$

Using these results we can then write $z=a+b j$ as

$$
\begin{aligned}
z=a+b j & =r \cos \theta+j r \sin \theta \\
& =r(\cos \theta+j \sin \theta)
\end{aligned}
$$

This is an alternative way of expressing the complex number with modulus r and argument θ.

$$
z=a+b j=r \angle \theta=r(\cos \theta+j \sin \theta)
$$

Example

State the modulus and argument of a) $z=9\left(\cos 40^{\circ}+j \sin 40^{\circ}\right), \quad$ b) $z=17(\cos 3.2+j \sin 3.2)$.

Solution

a) Comparing the given complex number with the standard form $r(\cos \theta+j \sin \theta)$ we see that $r=9$ and $\theta=40^{\circ}$. The modulus is 9 and the argument is 40°.
b) Comparing the given complex number with the standard form $r(\cos \theta+j \sin \theta)$ we see that $r=17$ and $\theta=3.2$ radians. The modulus is 17 and the argument is 3.2 radians.

Example

a) Find the modulus and argument of the complex number $z=5 j$.
b) Express $5 j$ in the form $r(\cos \theta+j \sin \theta)$.

Solution

a) On an Argand diagram the complex number $5 j$ lies on the positive vertical axis a distance 5 from the origin. Thus $5 j$ is a complex number with modulus 5 and argument $\frac{\pi}{2}$.
b)

$$
z=5 j=5\left(\cos \frac{\pi}{2}+j \sin \frac{\pi}{2}\right)
$$

Using degrees we would write

$$
z=5 j=5\left(\cos 90^{\circ}+j \sin 90^{\circ}\right)
$$

Example

a) State the modulus and argument of the complex number $z=4 \angle(\pi / 3)$.
b) Express $z=4 \angle(\pi / 3)$ in the form $r(\cos \theta+j \sin \theta)$.

Solution

a) Its modulus is 4 and its argument is $\frac{\pi}{3}$.
b) $z=4\left(\cos \frac{\pi}{3}+j \sin \frac{\pi}{3}\right)$.

Noting $\cos \frac{\pi}{3}=\frac{1}{2}$ and $\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$ the complex number can be written $2+2 \sqrt{3} j$.

Exercises

1. By first finding the modulus and argument express $z=3 j$ in the form $r(\cos \theta+j \sin \theta)$.
2. By first finding the modulus and argument express $z=-3$ in the form $r(\cos \theta+j \sin \theta)$.
3. By first finding the modulus and argument express $z=-1-j$ in the form $r(\cos \theta+j \sin \theta)$.

Answers

1. $3\left(\cos \frac{\pi}{2}+j \sin \frac{\pi}{2}\right)$,
2. $3(\cos \pi+j \sin \pi)$,
3. $\sqrt{2}\left(\cos \left(-135^{\circ}\right)+j \sin \left(-135^{\circ}\right)\right)=\sqrt{2}\left(\cos 135^{\circ}-j \sin 135^{\circ}\right)$.
