

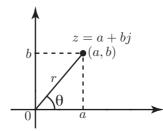
The form $r(\cos \theta + j \sin \theta)$

Introduction.

Any complex number can be written in the form $z = r(\cos \theta + j \sin \theta)$ where r is its modulus and θ is its argument. This leaflet explains this form.

1. The form $r(\cos \theta + j \sin \theta)$

Consider the figure below which shows the complex number $z = a + bj = r \angle \theta$.



Using trigonometry we can write

$$\cos \theta = \frac{a}{r}$$
 and $\sin \theta = \frac{b}{r}$

so that, by rearranging,

 $a = r \cos \theta$ and $b = r \sin \theta$

We can use these results to find the real and imaginary parts of a complex number given in polar form:

if
$$z = r \angle \theta$$
, the real and imaginary parts of z are:
 $a = r \cos \theta$ and $b = r \sin \theta$, respectively

Using these results we can then write z = a + bj as

 $z = a + bj = r \cos \theta + jr \sin \theta$ $= r(\cos \theta + j \sin \theta)$

This is an alternative way of expressing the complex number with modulus r and argument θ .

$z = a + bj = r \angle \theta = r(\cos \theta + j \sin \theta)$

Example

State the modulus and argument of a) $z = 9(\cos 40^\circ + j \sin 40^\circ)$, b) $z = 17(\cos 3.2 + j \sin 3.2)$.

Solution

a) Comparing the given complex number with the standard form $r(\cos \theta + j \sin \theta)$ we see that r = 9 and $\theta = 40^{\circ}$. The modulus is 9 and the argument is 40° .

b) Comparing the given complex number with the standard form $r(\cos \theta + j \sin \theta)$ we see that r = 17 and $\theta = 3.2$ radians. The modulus is 17 and the argument is 3.2 radians.

Example

a) Find the modulus and argument of the complex number z = 5j.

b) Express 5j in the form $r(\cos \theta + j \sin \theta)$.

Solution

a) On an Argand diagram the complex number 5j lies on the positive vertical axis a distance 5 from the origin. Thus 5j is a complex number with modulus 5 and argument $\frac{\pi}{2}$.

b)

$$z = 5j = 5\left(\cos\frac{\pi}{2} + j\sin\frac{\pi}{2}\right)$$

Using degrees we would write

$$z = 5j = 5(\cos 90^{\circ} + j \sin 90^{\circ})$$

Example

a) State the modulus and argument of the complex number $z = 4 \angle (\pi/3)$.

b) Express $z = 4 \angle (\pi/3)$ in the form $r(\cos \theta + j \sin \theta)$.

Solution

a) Its modulus is 4 and its argument is $\frac{\pi}{3}$.

b)
$$z = 4(\cos\frac{\pi}{3} + j\sin\frac{\pi}{3})$$
.

Noting $\cos \frac{\pi}{3} = \frac{1}{2}$ and $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$ the complex number can be written $2 + 2\sqrt{3}j$.

Exercises

- 1. By first finding the modulus and argument express z = 3j in the form $r(\cos \theta + j \sin \theta)$.
- 2. By first finding the modulus and argument express z = -3 in the form $r(\cos \theta + j \sin \theta)$.
- 3. By first finding the modulus and argument express z = -1 j in the form $r(\cos \theta + j \sin \theta)$.

Answers

1. $3(\cos\frac{\pi}{2} + j\sin\frac{\pi}{2}),$ 2. $3(\cos\pi + j\sin\pi),$ 3. $\sqrt{2}(\cos(-135^\circ) + j\sin(-135^\circ)) = \sqrt{2}(\cos 135^\circ - j\sin 135^\circ).$

www.mathcentre.ac.uk

